Research Article

Micronutrient deficiency, a novel nutritional risk factor for insulin resistance and Syndrom X

Christopher Edet Ekpenyong*

Published: 30 November, 2018 | Volume 2 - Issue 1 | Pages: 016-030

Emerging evidence indicates that micronutrient deficiency could play a significant role in the pathogenesis and progression of many chronic diseases including diabetes mellitus, hypertension, obesity, dyslipidemia, hyperuricemia, kidney disease, cancer, anemia and other cardio-metabolic and neurodegenerative diseases through the induction of Insulin resistance (IR). However, there are still gaps in our scientific knowledge regarding the links between micronutrient deficiencies, IR, and cardio metabolic disorders. This review provides current information on recent advances and a global perspective regarding the relationship between micronutrient deficiency, IR, and cardio metabolic disorders. Empirical evidence indicates that deficiencies in either micronutrients associated with insulin activity (such as Chromium, manganese, magnesium, and iron) or antioxidant enzyme cofactors (such as vitamin A, copper, zinc, and manganese) could impact several physiological processes leading to a cascade of metabolic and biochemical derangements such as B-cell apoptosis, loss of islet cell mass, defective tyrosine kinase activity, oxidative stress, pancreatic β-cell dysfunction, reduction in lean body mass, defective insulin signaling mechanism, elevated protein kinase C activity, and excess intracellular calcium. Collaboratively, these states of metabolic malfunctioning are associated with IR, which triggers the onset of many cardio metabolic diseases. Undoubtedly, the prevention of micronutrient deficiency may indeed ameliorate the incidence of IR and cardio-metabolic disorders in those at risk and in the general population.

Read Full Article HTML DOI: 10.29328/journal.afns.1001013 Cite this Article Read Full Article PDF


Minerals; Vitamins; Deficiency state; Hyper-insulinemia; Syndrome X


  1. Lee JM, Okumura MJ, Davis MM, Herman WH, Gurney JG. Prevalence and determinants of insulin resistance among U.S. Adolescents. Diabetes care. 2006; 29: 2427-2432. Ref.: https://goo.gl/Mi9QTy
  2. Do, HD, Lohsoonthorn V, Jiamjarasrangsi W, Lertmaharit S, Williams MA. Prevalence of Insulin resistance and its relationship with cardiovascular disease risk factors among Thai adults over 35 years old. Diabetes Res Clin Pract. 2010; 89: 303-308. Ref.: https://goo.gl/y4DyPi
  3. Agus ZS. Hypomagnesemia. J Am Soc Nephrol. 1999; 10: 1616-1622. Ref.: https://goo.gl/pNXTZ2
  4. Defronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991; 14: 173-194. Ref.: https://goo.gl/FLtAvz
  5. Mcauley KA, Williams SM, Mann JI, Walker RJ, Lewis-Barned NJ, et al. Diagnosing insulin resistance in the general population. Diabetic care. 2001; 24: 460-464. Ref.: https://goo.gl/UjF2TN
  6. Storlien LH, Higgins JA, Thomas TC, Brown MA, Wang HQ, et al. Diet composition and models. Br J Nutr. 2000; 83, suppl 1: S85-S90. Ref.: https://goo.gl/2tc558
  7. Ekpenyong CE. Micronutrient vitamin deficiencies and cardiovascular disease risk. Advancing current understanding European current understanding. European Journal of Preventive Medicine. 2017; 5: 1-18. Ref.: https://goo.gl/RsBHgF
  8. Ye J. Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets. 2007; 7: 65-74. Ref.: https://goo.gl/7zgC4X
  9. Action to Control Cardiovascular Risk in Diabetes Study Group, Gerstein HC, Miller ME, Byington RP, Goff DC Jr, et al. Effect of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358: 2545-2559. Ref.: https://goo.gl/ZCv3JB
  10. Sone H, Ito M, Sugiyama K, Ohneda M, Maebashi M, et al. Biotin enhances glucose stimulated insulin secretion in the isolated perfused pancreas of the rat. J Nutri Biochem. 1999; 10: 237-243. Ref.: https://goo.gl/6u9WYJ
  11. Reaven G. Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation. 2002; 106: 286-288. Ref.: https://goo.gl/meyQKm
  12. Abate N, Vega GL, Garg A, Grundy SM. Abnormal cholesterol distribution among lipoprotein fractions in normolipidemic patients with mild NIDDM. Atherosclerosis. 1995; 118: 111-122. Ref.: https://goo.gl/UohBtd
  13. Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis. 1990; 10: 223-231. Ref.: https://goo.gl/HiwAux
  14. Eckel RH, Prasad PA, Kern PA, Marshall S. Insulin regulation of lipoprotein lipase in cultured isolated rats adipocytes. Endocrinology. 1984; 114: 1665-1671. Ref.: https://goo.gl/xYjGWc
  15. Arai T, Yamahita S, Hirano K, Sakai N, Kotani K, et al. Increased plasma cholestryl ester transfer protein in obese subjects: a possible mechanism for the reduction of serum HDL cholesterol levels in obesity. Arterioscler Thromb. 1994; 14: 1129-1136. Ref.: https://goo.gl/758TrB
  16. Dullart RP, Sluiter WJ, Dikkeschei LD, Hoogenberg K, Van Tol A. Effects of adiposity on plasma lipid transfer protein activities: a possible link between insulin resistance and high density lipoprotein metabolism. Eur J Clin Invest. 1994; 24: 188-194. Ref.: https://goo.gl/rTFrX9
  17. Swislocki AM, Hoffman B, Reaven GM. Insulin resistance, glucose intolerance and hyperinsulinemia in patients with hypertension. Am J Hypertens. 1989; 2: 419-423. Ref.: https://goo.gl/Vz7a6B
  18. Lastra G, Dhuper S, Johnson MS, Sowers JR. Salt, aldosterone, and insulin resistance: impact on the cardiovascular system. Nat Rev Cardiol. 2010; 7: 577-584. Ref.: https://goo.gl/cZbVcW
  19. Zhou MS, Schulman IH, Zeng Q. Link between the renin-angiotensin system and insulin resistance: implications for cardiovascular disease. Vasc Med. 2012; 17: 330-341. Ref.: https://goo.gl/dQ2JuJ
  20. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin's vascular effects in humans. J Clin Invest. 1994; 94: 2511-2515. Ref.: https://goo.gl/smzbKp
  21. Manhiani MM, Cormican MT, Brands MW. Chronic sodium-retaining action of insulin in diabetic dogs. Am J Physiol Renal Physiol. 2011; 300: 957-965. Ref.: https://goo.gl/5ixsDL
  22. Chagas CA, Borges MC, Martini LA, Rogero MM. Focus on vitamin D, inflammation and type2 diabetes. Nutrients. 2012; 4: 52-67. Ref.: https://goo.gl/h9udS3
  23. Pavlov TS, Ilatovskaya DV, Levchenko V, Li L, Ecelbarger CM, et al. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB J. 2013; 27: 2723-2732. Ref.: https://goo.gl/djgKrx
  24. Sone H, Ito M, Sugiyama K, Ohneda M, Maebashi M, et al. Biotin enhances glucose stimulated insulin secretion in the isolated perfused pancreas of the rat. J Nutri Biochem. 1999; 10: 237-243. Ref.: https://goo.gl/WYGeGZ
  25. Larrieta E, de la Vegal-Monroy ML, Vital P, Agiulera A, German MS, et al. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nut Biochem. 2012; 23: 392-399. Ref.: https://goo.gl/tAmXau
  26. Myers SA, Nield A, Myers M. Zinc transporters, mechanisms of action and therapeutic utility: implication for type2 diabetes mellitus. J Nutr Metab. 2012; Article ID 173712: 13. Ref.: https://goo.gl/SdvwgF
  27. Suâre A, Pulido N, Casla A, Casanova B, Ameta FJ, et al. Impaired tyrosine-kinase activity of muscle insulin receptors from hypomagnesaemic rats. Diabeteologia. 1995; 38: 1262-1270. Ref.: https://goo.gl/MhMWpz
  28. Wang X, Zhang M, Lui G, Chang H, Zhang M, et al. Associations of serum manganese levels with prediabetes and diabetes among ≥ 60-year-old Chinese adults: A population–based cross-sectional analysis. nutrients. 2016; 8: 497. Ref.: https://goo.gl/WVmbE2
  29. Beck-Nielsen H. Insulin resistance: organ manifestation and cellular mechanism. Ugeskr Laeger. 2002; 164: 2130-2135. Ref.: https://goo.gl/Hspp2V
  30. Reaven GM. Insulin resistance and its consequences. In: Le Roith D, Taylor SI, Olefasky JM, eds. Diabetes mellitus: a fundamental and clinical text. 3rd ed. Philadelphia: Lippincott, Williams and Wilkins. 2003; 899-915. Ref.: https://goo.gl/MJ6W85
  31. Godland IF, Crook D, Walton C, Wyon V, Oliver MF. Influence of insulin resistance, secretion and clearance on serum cholesterol, triglycerides, lipoprotein cholesterol and blood pressure in healthy men. Artherioscler Thromb. 1992; 12: 1030-1035. Ref.: https://goo.gl/n5DJSH
  32. Rodriquez E, Bermejo LM, Lopez-sobalar AM, Ortega RM. An inadequate intake of manganese may favour insulin resistance in girls. Nutr Hosp. 2011; 26: 965-970. Ref.: https://goo.gl/9cpbmU
  33. Rosario JF, Gomez MP, Anbu P. Does the maternal micronutrient deficiency (copper or zinc or vitamin E) modulate the expression of placental 11β hydroxysteriod dehydrogenase -2 per se predispose offspring to insulin resistance and hypertension in later life? Indian J Physiol Pharmacol. 2008; 52: 355-365. Ref.: https://goo.gl/pWnTpx
  34. Lee SH, Jouihan HA, Cooksey RC, Jones D, Kim HJ, et al. Manganese supplementation protects against diet-induced diabetes in wild type mice by enhancing insulin secretion. Endocrinology. 2013; 154: 1029-1038. Ref.: https://goo.gl/RdN3D3
  35. Weidmann P, Bohlen L, de Courten M. Insulin resistance and hyperinsulinemia in hypertension. J Hypertens. 1996; 13: 65-72. Ref.: https://goo.gl/NxetKQ
  36. Salvetti A, Brogi G, di Legge V, Bernini GP. The interrelationship between insulin resistance and hypertension. Drugs. 1993; 46: 149-159. Ref.: https://goo.gl/uUkQgR
  37. Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 2006; 14: 840-846. Ref.: https://goo.gl/ViU9g5
  38. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000; 106: 473-481. Ref.: https://goo.gl/ySbs9J
  39. Rao G. Insulin resistance syndrome. American Family Physician. 2001; 63: 1159-1163. Ref.: https://goo.gl/wLztk6
  40. Barker DJ. In utero programming of chronic disease. Clinical Science. 1998a; 95: 115-128. Ref.: https://goo.gl/c5UyYi
  41. Wilcox G. Insulin and insulin resistance. Clin Biochem Rev. 2005; 26: 19-39. Ref.: https://goo.gl/RvMC5h
  42. Quatanani M, Lazar MA. Mechanisms of obesity associated insulin resistance: many choices on the menu. GENES & Development. 2007; 21: 1443-1445. Ref.: https://goo.gl/Vo6AXm
  43. Sung CC, Liao MT, Lu KC, Wu CC. Role of vitamin D in insulin resistance. J Biomed Biotechnol 2012; Ref.: https://goo.gl/DXzLYo
  44. Rotruck JT, Hoekstra WG, Pope AL, Ganther H, Swanson A, et al. Relationship of selenium to GSH peroxidase Fed. Proc. 1973; 31; 691.
  45. Awasthi YC, Beutler E, Srivastava SK. Purification and properties of human erythrocyte glutathione peroxidase. J Biol Chem. 1975; 250: 5144-5149. Ref.: https://goo.gl/TJE1WR
  46. Schrauzer GN. Nutritional selenium supplementation; product types, quality, and safety. J Am Coll Nutr. 2001: 20; 1-4. Ref.: https://goo.gl/LhuFLB
  47. Thompson JN, Scott ML. Impaired lipid and vitamin E absorption related to atrophy of the pancrease in selenium-deficient chicks. J Nutr. 1970; 100: 797-809. Ref.: https://goo.gl/kHbghd
  48. Souness JE, Stouffer JE, Chagoya de Sanchez V. The effect of selenium-deficiency on rat fat-cell glucose oxidation. Biochem J. 1983; 214: 471-477. Ref.: https://goo.gl/mHBoCV
  49. Asayama K, Kooy NW, Burr IM. Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J Lab Clin Med. 1986; 107: 459–464. Ref.: https://goo.gl/Q5JvfS
  50. Navarro-Alarcon M, López-D de la Serrana H, Perez-Valero V, Lopez-Martinez C. Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci Total Environ. 1999; 228: 79-85. Ref.: https://goo.gl/eZUikN
  51. Zhang MS, Li X, Liu Y, Zhao H, Zhou JC, Li K, et al. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med. 2012; 52: 1335-1342. Ref.: https://goo.gl/qmw59N
  52. Labunskyy VM, Lee BC, Handy DE, Loscalzo J, Hatfield DL, et al. Both maximal expression of selenoproteins and selenoprotein deficiency can promote development of type 2 diabetes-like phenotype in mice. Antioxid Redox Signal. 2011; 14: 2327–2336. Ref.: https://goo.gl/XopaX7
  53. Diplock AT, Hoekstra WG. Metabolic Aspects of selenium action and toxicity critical review in toxicology. 1976; 4: 271-329. Ref.: https://goo.gl/pDQASx
  54. Zeng MS, Li X, Liu Y, Zhao H, Zhou JG, et al. A high-selenium diet induces insulin resistance in gestating rats and their offspring. Free Radic Biol Med. 2012; 52: 1335-1342. Ref.: https://goo.gl/Mu3gFP
  55. Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 1: 785-789. Ref.: https://goo.gl/6rEjvV
  56. Petersen KF, Shulman GI. Etiology of insulin resistance. Am J Med. 2006; 119: 10-16. Ref.: https://goo.gl/Hc3Lrw
  57. Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997; 46: 3-10. Ref.: https://goo.gl/4GfK8g
  58. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 2006; 116: 1494-1505. Ref.: https://goo.gl/j5TW1A
  59. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest. 2006; 116: 115-124. Ref.: https://goo.gl/4MjLVo
  60. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007; 117: 175-184. Ref.: https://goo.gl/ErtVpD
  61. Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000; 275: 9047-9054. Ref.: https://goo.gl/GF5oSY
  62. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420: 333-336. Ref.: https://goo.gl/ExxCsV
  63. Gao Z, Zhang X, Zuberi A, Hwang D, Quon MJ, Lefevre M. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol Endocrinol. 2004; 18: 2024-2034. Ref.: https://goo.gl/s4ykx2
  64. Yuan M, Konstantopoulos N, Lee J, Hansen L, Li ZW, et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk. Science. 2001; 293: 1673-1677 Ref.: https://goo.gl/5Vjgoy
  65. Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem. 2002; 277: 42394-42398. Ref.: https://goo.gl/BT8FBd
  66. Ueki K, Kondo T, Tseng YH, Kahn CR. Central role of suppressors of cytokine signaling proteins in hepatic steatosis, insulin resistance, and the metabolic syndrome in the mouse. Proc Natl Acad Sci. 2004; 101: 10422-10427. Ref.: https://goo.gl/p2NX3J
  67. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid- induced insulin resistance. J Clin Invest. 2006; 116: 3015-3025 Ref.: https://goo.gl/tUHe2H
  68. Zile MH. Vitamin A and embryonic development: An overview. J Nutr. 1988; 128: 455S-458S. Ref.: https://goo.gl/oQgDQj
  69. Martín M1, Gallego-Llamas J, Ribes V, Kedinger M, Niederreither K, et al. Dorsal pancreas agenesis in retinoic acid-deficient RALDH2 mutant mice. Demonstrates the vital role of vitamin A in pancreatic development. Dev. Biol. 2005; 284: 399–411. Ref.: https://goo.gl/thgpTe
  70. Oström M1, Loffler KA, Edfalk S, Selander L, Dahl U, et al. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells. PLoS ONE. 2008; 3: e2841. Ref.: https://goo.gl/jD8npN
  71. Berry DC, Noy N. All-trans-retinoic acid represses obesity and insulin resistance by activating both peroxisome proliferation-activated receptor beta/delta and retinoic acid receptor. Mol Cell Biol 2009; 29: 3286–3296. Ref.: https://goo.gl/dmoeae
  72. Trasino SE, Gudas LJ. Vitamin A missing link in diabetes? Diabetes manag. 2015: 5: 359-367. Ref.: https://goo.gl/CC5BZj
  73. Amengual J, Ribot J, Bonet ML, Palou A. Retinoic acid treatment enhances lipid oxidation and inhibits lipid biosynthesis capacities in the liver of mice. Cell. Physiol. Biochem. 2010; 25: 657–666. Ref.: https://goo.gl/zdGWWq
  74. Transino SE, Benoit YD, Gudas LJ. Vitamin A deficiency causes hyperglycemia and loss of pancreatic β-cell mass. The Journal of Biological chemistry. 2015; 290: 1456-1473. Ref.: https://goo.gl/pxqX4i
  75. Henquin JC, Rahier J. Pancreatic alpha cell mass in European subjects with Type 2 diabetes. Diabetologia. 2011; 54: 1720–1725. Ref.: https://goo.gl/JQJsja
  76. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with Type 2 diabetes. Diabetes. 2003; 52: 102–110. Ref.: https://goo.gl/vLuDp5
  77. Yönen K, Alfthan G, Groop L, Saloranta C, Aro A, et al. Dietary intakes and plasma concentrations of carotenoids and tocopherols in relation to glucose metabolism in subjects at high risk of Type 2 diabetes: the botnia dietary study. Am J Clin Nutr. 2003; 77: 1434–1441. Ref.: https://goo.gl/iQvMyK
  78. Sluijs I, Cadier E, Beulens JW, Van Der A DL, Spijkerman AM, et al. Dietary intake of carotenoids and risk of Type 2 diabetes. Nutr. Metab. Cardiovasc. Dis. 2015; 25: 376–381. Ref.: https://goo.gl/x2Aqif
  79. Basu TK, Tze WJ, Leichter J. Serum vitamin A and retinol-binding protein in patients with insulin-dependent diabetes mellitus. Am J Clin Nutr. 1989; 50: 329–331. Ref.: https://goo.gl/EGMWPe
  80. Lambrot R1, Xu C, Saint-Phar S, Chountalos G, Cohen T, et al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes. Nat commun4 2013. Ref.: https://goo.gl/su9Hbm
  81. Rosolová H, Simon J, Mayer O Jr, Racek J, Dierzé T, et al. Unexpected inverse relationship between insulin resistance and serum homocysteine in healthy subjects. Physiol Res. 2002; 51: 93-98. Ref.: https://goo.gl/NSjDqk
  82. Setola E, Monti LD, Galluccio E, Palloshi A, Fragassio G, Paroni R, et al. Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patience with metabolic syndrome; relationship between homocysteine levels and hyper insulinemia. European Journal of Endocrinology. 2004; 151: 483-489. Ref.: https://goo.gl/5HNZnc
  83. Li J, Goh CE2, Demmer RT2, Whitcomb BW3, Du P, et al. Association between serum folate and insulin resistance among US Non-diabetic adults. Sci Rep. 2017; 7: 9187 Ref.: https://goo.gl/f5M1n4
  84. Najib S, Sánchez-Margalet V. Homocysteine thiolactone inhibits insulin signaling and glutathione has a protective effect. Journal of Molecular Endocrinology. 2001; 27: 85-91. Ref.: https://goo.gl/Di58WK
  85. Larrieta E, de la Vegal-Monroy ML, Vital P, Agiulera A, German MS, et al. Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nut Biochem. 2012; 23: 392-399. Ref.: https://goo.gl/qLbL4U
  86. Myers SA, Nield A, Myers M. Zinc transporters, mechanisms of action and therapeutic utility: implication for type2 diabetes mellitus. J Nutr Metab. 2012; Article ID 173712: 13. Ref.: https://goo.gl/8EhfnY
  87. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, et al. Endoplasmic reticulum stress link obesity, insulin action and type 2 diabetes. Science. 2004; 306: 457-461. Ref.: https://goo.gl/xHveD1
  88. Christie-David DJ, Girgis CM, Gunton JE. Effects of vitamin C and D in type 2 diabetes mellitus. Dovepress. 2015: 7; 21-28. Ref.: https://goo.gl/PGEJ1P
  89. Khodaeian M, Tabatabaer-Malazy O, Qorbani M, Farzadfar F, Amini P, et al. Effect of vitamin C and E on insulin resistance in diabetes: a meta-analysis study. Eur J. Clin Invest. 2015; 45: 1161-1174. Ref.: https://goo.gl/uzMJLi
  90. Picklo MJ, Thyfault JP. Vitamin E and vitamin C do not reduce insulin sensitivity but inhibit mitochondrial protein expression in exercising obese rats. Appl Physiol Nutr Metab. 2015; 40: 343-352. Ref.: https://goo.gl/9ix1Ve
  91. Johnston CS, Yen MF. Megadoses of vitamin C delays insulin response to a glucose challenge in normoglycemia adults. AM J. Clin. Nutr b. 1994; 60: 735-738. Ref.: https://goo.gl/C8upYc
  92. Ashor AW, Werner AD, Lara J, Willis ND Mathers JC, Siervo M. Effects of vitamin C supplementation on glycaemic control: a Systematic review and meta-analysis of renal missed controlled trials. Eur J Clin Nutr. 2017; 71: 1371-1380. Ref.: https://goo.gl/8Sd5AJ
  93. Mason SA, Della Gatta PA, Snow RJ, Russell AP, Wadley GD. Ascorbic acid supplementation improves skeletal muscle oxidative stress and insulin sensitivity in people with type 2 diabetes. Findings of a randomized controlled study. Free Radical Biol. Med. 2016; 93: 227-238. Ref.: https://goo.gl/fMHZrF
  94. Mandl J, Szarka A, Banhegyi G. Vitamin C: update on physiology and pharmacology. Br J Pharmacol. 2009; 15: 1097-1110. Ref.: https://goo.gl/ZABrRD
  95. Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L. Decreasing hypothalamic insulin receptors cause hyperphagia and insulin resistance in rats. Nat Neurosci. 2002a; 5: 566-572. Ref.: https://goo.gl/VPkZrg
  96. Obici S, Feng Z, Morgan K, Stein D, Karkanias G, et al. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002b; 51: 271-275 Ref.: https://goo.gl/mymijQ
  97. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, et al. Free fatty acid induced insulin resistance is associated with activation of phosphatidylinositol 3-kinase. Diabetes. 1999; 48: 1270-1274. Ref.: https://goo.gl/sqywhK
  98. Kim J, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res. 2008; 102: 401-414. Ref.: https://goo.gl/GsqKiv
  99. Kyriakis JM, Avruch J. Sounding the alarm: Protein kinase cascades activated by stress and inflammation. J Biol Chem. 1996; 271: 24313-24316. Ref.: https://goo.gl/UxCoF6
  100. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress activated signaling pathways mediators of insulin resistance and beta dysfunction? Diabetes. 2003; 52: 1-8. Ref.: https://goo.gl/Rq4vMf
  101. Morino K, Peterson KF, Dufour S, Befroy D, Frattini J, et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin resistant offspring of type2 diabetes parents. J Clin Invest. 2005; 115: 3587-3593. Ref.: https://goo.gl/pgpuQV
  102. Eckel RH, Prasad PA, Kern PA, Marshall S. Insulin regulation of lipoprotein lipase in cultured isolated rats adipocytes. Endocrinology. 1984; 114: 1665-1671. Ref.: https://goo.gl/L2wHSD
  103. Shidfar F, Rezael KH, Hosseini S, Heydari. The effect of vitamin E on insulin resistance and cardiovascular diseases risk factors in metabolic syndrome. Iranian J of Endocrinology and metabolism (IJEM). 2009; 10: 445-454. Ref.: https://goo.gl/mNqBjC
  104. Moorthi RV, Bobby Z, Selvaraj N, Sridhar MG. Vitamin E protects the insulin sensitivity and redox balance in rat L6 muscle cells exposed to oxidative stress. Clinica Chemica Acta. 2006; 367:132-136. Ref.: https://goo.gl/VtP3pv
  105. Manning PJ, Sutherland WH, Williams SM, DeJong SA, Ryalls AR, et al. Effect of high dose vitamin E on insulin resistance and associated parameters in overweight subjects. Diabetes care. 2004: 27: 2166-2171. Ref.: https://goo.gl/QW1ZGL
  106. Sanchez-Lugo L, Mayer-George EJ, Howard G, Selby JV, et al. Insulin sensitivity and intake of vitamins E and C in African. American Hispanic and non-Hispanic white men and women. The insulin resistance and atherosclerosis study (IRAS). Am J Clin Nutr. 1997; 66: 1224-1231. Ref.: https://goo.gl/sWupAx


Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?