Abstract

Review Article

Possible links between consumption of A1 “like” milk And Type 1 Diabetes (T1D)

Mohammad Raies Ul Haq*, Asima H and Aarif B

Published: 27 June, 2019 | Volume 3 - Issue 1 | Pages: 010-016

During the last three decades, there has been an interesting debate on the intake of A1 ‘like” milk and incidence of type 1 diabetes (T1D) in genetically predisposed individuals. The epidemiological, ecological and case-control studies have concrete pieces of evidences in favor of the hypothesis that is further supported by animal trials in mice and rat and in vitro trials on cell lines. But on the other hand, European Food Safety Authority reported that there isn’t sufficient data to draw a final recommendation at this stage in terms of contradictory results, lack of cause-effect relationship and being a mere suggestive evidence [1]. However, the report itself states that these studies are strong enough to formulate a concrete hypothesis and further research is needed to confirm the same. Keeping in view the published data in favor of the hypothesis and the counter-arguments, it is suggested that further research with well-designed animal and in vitro trials with intact proteins and peptides is needed to fully confirm the hypothesis. Until the issue is fully resolved, it’s the personal choice of the individuals at risk to T1D (genetically predisposed) to either remove A1 “like” or increase the A2 “like” milk from their diet. 

Read Full Article HTML DOI: 10.29328/journal.afns.1001018 Cite this Article Read Full Article PDF

Keywords:

β-casein; A1 β-casein; A2 β-casein; Type 1 diabetes

References

  1. EFSA, European Food Safety Authority. Review of the potential health impact of β-casomorphins and related peptides. Scientific Report n. 231. 2009; 1–107. Ref.: http://bit.ly/2X7wxL3
  2. Atkinson MA, Eisenbarth GS. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet. 2001; 358: 221–229. Ref.: http://bit.ly/2Ygd7A9
  3. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010; 464: 1293–1300. Ref.: http://bit.ly/2LqbFrd
  4. Todd JA. A protective role of the environment in the development of type 1 diabetes? Diabetic Medicine.1991; 8: 906–910. Ref.: http://bit.ly/2IScqaV
  5. Todd JA. Etiology of type 1 diabetes. Immunity. 2010; 32: 457–467. Ref.: http://bit.ly/2XbnqJo
  6. Chia JSJ, McRae JL, Kukuljan S, Woodford K, Elliott RB, et al. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutrition & Diabetes. 2017; 15; 7:e274. Ref.: http://bit.ly/2LmKPAb
  7. Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, et al. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005; 54: S125–S136. Ref.: http://bit.ly/2xf9ajp
  8. Coppieters KT, von Herrath MG. Histopathology of type 1 diabetes: old paradigms and new insights. Rev Diabet Stud. 2009; 6: 85-96. Ref.: http://bit.ly/2FxYr7V
  9. Scott FW. Cow milk and insulin-dependent diabetes mellitus: Is there a relationship? Am J Clin Nutr. 1990; 51: 489–491. Ref.: http://bit.ly/2xbKjwP
  10. Elliott RB, Harris DP, Hill JP, Bibby NJ, et al. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia. 1999; 42; 292-296. Ref.: http://bit.ly/2RGI1iz
  11. Thorsdottir I, Birgisdottir BE, Johannsdottir IM, Harris DP, Hill J, et al. Different β-casein fractions in Icelandic versus Scandinavian cow's milk may influence diabetogenicity of cow's milk in infancy and explain low incidence of insulin-dependent diabetes mellitus in Iceland. Pediatrics. 2000; 106: 719-724. Ref.: http://bit.ly/2X12Cz7
  12. Birgisdottir BE, Hill JP, Harris DP, Thorsdottir I. Variation in consumption of cow milk proteins and lower incidence of Type 1 diabetes in Iceland vs the other 4 Nordic countries. Diabetes Nutr Metab. 2002; 15: 240-245. Ref.: http://bit.ly/2XcMQWX
  13. McLachlan CNS. Breeding and milking cows for milk free of β-casein A1. A2 Corporation, US 7863002B2. 2001. Ref.: http://bit.ly/2X9VXrx
  14. Laugesen M, Elliott R. Ischaemic heart disease, type 1 diabetes, and cow milk A1 ß-casein. N Z Med J. 2003; 116: 121-132. Ref.: http://bit.ly/2RBxpSd
  15. Elliot RT, Martin JM. Dietary protein: A trigger of insulin dependent diabetes in BB rat. Diabetologia. 1984; 26: 297-299. Ref.: http://bit.ly/2XuSGCo
  16. Elliot RB, Hill RJ. Method of selecting non-diabetogenic milk or milk products and milk or milk products so selected. A2 Corporation. 1995; CA2204245: PCT/NZ1995/000114.
  17. Elliott RB, Wasmuth H, Hill J. Immunosuppressing effects of cow milk β-casomorphins in prediabetic mice and humans. 16th IDF Congress, Helsinki. 1997.
  18. Yin H, Miao J, Zhang Y. Protective effect of β-casomorphin-7 on type 1 diabetes rats induced with streptozotocin. Peptides. 2010; 31: 1725–1729. Ref.: http://bit.ly/2Xe6YrB
  19. Yin H, Miao J, Ma C, Sun G, Zhang Y. β-casomorphin-7 cause decreasing in oxidative stress and inhibiting NF-κB-iNOS-NO signal pathway in pancreas of diabetes rats. J Food Sci. 2012; 77: C278-282. Ref.: http://bit.ly/2IP5CuK
  20. Cavallo MG, Monetini L, Walker B, Thorpe R, Pozzilli P. Diabetes and cow’s milk. Lancet. 1996; 348: 1655.
  21. Padberg S, Schumm-Draeger PM. "Significance of A1 and A2 antibodies against β-casein in insulin-dependent diabetes mellitus". Deutsche Medizinische Wochenschrift. 1999; 124: 1518-1521. Ref.: http://bit.ly/2LhpCYy
  22. Monetini L, Barone F, Stefanini L, Petrone A, Walk T, et al. Establishment of T cell lines to bovine β-casein and β-casein-derived epitopes in patients with type 1 diabetes. J Endocrinol. 2003; 176: 143-150. Ref.: http://bit.ly/2ZU6IL9
  23. Banchuina N, Boonyasrisawata W, Vannasaengb S, DharakulaPa-thai T, Chaicharn Deerochanawongd Y, et al. Cell-mediated immune responses to GAD and β-casein in type 1 diabetes mellitus in Thailand. Diabetes Res Clin Pract. 2002; 55: 237-245. Ref.: http://bit.ly/2ZQUiUo
  24. Elliott RB, Wasmuth H, Hill J. Immunosuppressing effects of cow milk β-casomorphins in prediabetic mice and humans. 16th IDF Congress, Helsinki. 1997.
  25. Ul Haq MR, Kapila R, Saliganti V. Consumption of β-casomorphins-7/5 induce inflammatory immune response in mice gut through Th2 pathway. J Functional Foods. 2014a; 8: 150–160. Ref.: http://bit.ly/2RDb1HX
  26. Ul Haq MR, Kapila R, Sharma R, Saliganti V, Kapila S. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut. Eur J Nutr. 2014b; 53: 1039–1049. Ref.: http://bit.ly/2JcUkze
  27. Harrison LC, Honeyman MC. Cow’s milk and type 1 diabetes: The real debate is about mucosal immune function. Diabetes. 1999; 48: 1501–1507. Ref.: http://bit.ly/2NhiH43
  28. Crawford RA, Boland MJ, Hill JP. Changes over time in the association between deaths due to ischaemic heart disease and some main food types. Australian Journal of Dairy Technology. 2003; 58: 183. Ref.: http://bit.ly/2X4ubri

Similar Articles

Recently Viewed

  • Difference between conventional and modern methods for examination of fingerprints
    Ambati Ramesh Babu* Ambati Ramesh Babu*. Difference between conventional and modern methods for examination of fingerprints. J Forensic Sci Res. 2021: doi: 10.29328/journal.jfsr.1001025; 5: 037-040
  • Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia
    Zenebe W*, Daniel T and Weyessa G Zenebe W*,Daniel T,Weyessa G. Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia. J Plant Sci Phytopathol. 2021: doi: 10.29328/journal.jpsp.1001054; 5: 004-013
  • Statistical Mathematical Analysis of COVID-19 at World Level
    Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda and Zambrano-Cabanillas Abel Walter Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda, Zambrano-Cabanillas Abel Walter. Statistical Mathematical Analysis of COVID-19 at World Level. Int J Phys Res Appl. 2024: doi: 10.29328/journal.ijpra.1001082; 7: 040-047
  • Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats
    Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji and Victor Abulude and Funmilayo Elizabeth Olaleye Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji, Victor Abulude and Funmilayo Elizabeth Olaleye. Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats. J Cardiol Cardiovasc Med. 2024: doi: 10.29328/journal.jccm.1001177; 9: 044-051
  • Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria
    Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira and Rafaelle Cavalcante Lira Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira, Rafaelle Cavalcante Lira. Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria. Arch Pharm Pharma Sci. 2024: doi: 10.29328/journal.apps.1001053; 8: 024-028.

Read More

Most Viewed

Read More

Help ?