Review Article

Agaricus brasiliensis (Sun mushroom) and its therapeutic potential: A review

Aline Mayrink de Miranda*

Published: 10 January, 2022 | Volume 6 - Issue 1 | Pages: 006-015

In recent decades, the chemical, nutritional, and functional properties of edible mushrooms have attracted considerable attention, resulting in numerous reports on their health-associated benefits. One among such edible mushrooms, Agaricus brasiliensis, is native to Brazil and is an important food supplement. This review discusses the therapeutic potential of Agaricus brasiliensis and summarizes the current studies on this edible mushroom.

Read Full Article HTML DOI: 10.29328/journal.afns.1001032 Cite this Article Read Full Article PDF


Agaricus brasiliensis; Bioactive compound; Edible mushroom; Natural product; Pharmacological activity


  1. Loguercio-leite C, Groposo C, Dreschler-Santos ER, de F. Figueiredo N, da S. Godinho P, et al. A particularidade de ser um fungo – constituintes celulares. Biotemas. 2006; 19: 17-27.
  2. Chang ST. A global strategy for the bioconversion of lignocellulosic biomass - a challenge of a “Non-green Revolution”. 1998. https://www.zeri.uniosnabruek.de./nongreeneng.htm
  3. Gao Y, Lan J, Dai X, Ye J, Zhou S, et al. A phase I/II study of Ling Zhi Mushroom Ganoderma lucidum (W. Curt.: Fr) Lloyd (Aphyllophoromycetideae) Extract in patients with type II diabetes mellitus. Int J Med Mushrooms. 2004; 6: 1.
  4. Kodama N, Murata Y, Asakawa A, Inui A, Hayashi M, et al. Maitake D-Fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor bearing mice. Nutrition. 2005; 21: 624-629. PubMed: https://pubmed.ncbi.nlm.nih.gov/15850970/
  5. Yu CH, Kan SF, Shu CH, Lu TJ, Lucy SH, et al. Inhibitory mechanisms of Agaricus blazei Murill on the growth of prostate cancer in vitro and in vivo. J Nutr Biochem. 2009; 20: 753764. PubMed: https://pubmed.ncbi.nlm.nih.gov/18926679/
  6. Savoie JM, Minvielle N, Largeteau LM. Radical-scavenging properties of extracts from the white button mushroom Agaricus bisporus. J Sci Food Agri. 2008; 88: 970-975.
  7. Song HH, Chae HS, Oh SR, Lee HK, Chin YW. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells. Am J Chin Med. 2012; 40: 1073-1084. PubMed: https://pubmed.ncbi.nlm.nih.gov/22928836/
  8. Tsai SY, Tsai HL, Mau JL. Antioxidant properties of Agaricus blazei, Agrocybe cylindracea, and Boletus edulis. LWT Food Sci. Technol. 2007; 40: 1392-1402.
  9. Mau JL, Lin HC, Chen ST. Antioxidant properties of several medicinal ushroom. J Agri Food Chem. 2002; 50: 6072-6077. PubMed: https://pubmed.ncbi.nlm.nih.gov/12358482/
  10. Heinemann P. Agaricaceae des regions intertropicales d’Amerique du Sud: Agarici Austroamericani VII. Boll. Jard Bot Natl Belg. 1993; 62:355-384.
  11. Kerrigan RW. Agaricus subrufescens, a cultivated edible and medicinal mushroom, and its synonyms. Mycologia. 2005; 97: 12-24. PubMed: https://pubmed.ncbi.nlm.nih.gov/16389952/
  12. Mizuno T, Sakai T, Chihara, G. Health foods and medicinal usages of mushrooms. Food Rev Int. 1995; 11: 69-81.
  13. Dias ES. Mushroom cultivation in Brazil: challenges and potential for growth. Ciência e Agrotecnologia. 2010; 34: 795-803.
  14. Wasser SP. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl Microbiol Biotechnol. 2002; 60: 258-274. PubMed: https://pubmed.ncbi.nlm.nih.gov/12436306/
  15. Kerrigan RW. Inclusive and Exclusive Concepts of Agaricus Subrufescens Peck: a Reply to Kerrigan RW. Int J Med Mushrooms. 2007; 9: 79-84.
  16. Wasser SP. Is a widely cultivated culinary–medicinal Royal Sun Agaricus (Champignon do Brazil, or the Himematsutake mushroom) Agaricus brasiliensis indeed a synonym of A. subrufescens Peck? Int J Med Mushrooms. 2005; 7: 507-511.
  17. Wasser SP. Molecular identification of species of the genus Agaricus. Why should we look at morphology? Int J Med Mushrooms. 2007; 9: 85-88.
  18. Borzacchini O. Agaricus (ABM): general info. 2008. http://www.altcancer.com/agaricus.htm
  19. Ayeka PA. Potential of mushroom compounds as immunomodulators in cancer immunotherapy: a review. Evid Based Complement. Alternat Med. 2018; 2018: 7271509. PubMed: https://pubmed.ncbi.nlm.nih.gov/29849725/
  20. Berger A, Rein D, Kratky K, Monnard I, Hajjaj H, et al. Cholesterol-lowering properties of Ganoderma lucidum in vitro, ex vivo, and in hamsters and minipigs. Lipids Health Dis. 2004; 3: 2. PubMed: https://pubmed.ncbi.nlm.nih.gov/14969592/
  21. Zhong M, Tai A, Yamamoto I. In vitro augmentation of natural killer activity and interferon-γ production in murine spleen cells with blazei fruiting body fractions. Biosci Biotechnol Biochem. 2005; 69: 2466-2469. PubMed: https://pubmed.ncbi.nlm.nih.gov/16377912/
  22. Rubel R, Santa HSD, Dos Santos LF, Fernandes LC, Figueiredo BC, et al. Immunomodulatory and antitumoral properties of Ganoderma lucidum and agaricus brasiliensis (Agaricomycetes) medicinal mushrooms. Int J Med Mushrooms. 2018; 20: 393-403. PubMed: https://pubmed.ncbi.nlm.nih.gov/29953399/
  23. Brown GD, Herre J, Williams DL, Willment JA, Marshall ASJ, et al. Dectin‐1 mediates the biological effects of beta‐ J Exp Med. 2003; 197: 1119-1124. PubMed: https://pubmed.ncbi.nlm.nih.gov/12719478/
  24. Hetland G, Johnson E, Bernardshaw SV, Grinde B. Can medicinal mushrooms have prophylactic or therapeutic effect against COVID-19 and its pneumonic superinfection and complicating inflammation? Scand. J Immunol. 2020; e12937. PubMed: https://pubmed.ncbi.nlm.nih.gov/32657436/
  25. Bernardshaw S, Johnson E, Hetland G. An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice. Scand J Immunol. 2005; 62: 393-398. PubMed: https://pubmed.ncbi.nlm.nih.gov/16253127/
  26. Lin JG, Fan MJ, Tang NY, Yang JS, Hsia TC, et al. An extract of Agaricus blazei Murrill administered orally promotes immune responses in murine leukemia BALB/c mice in vivo. Integr. Cancer Ther. 2012; 11: 29-36. PubMed: https://pubmed.ncbi.nlm.nih.gov/22637937/
  27. Wasser SP, Weis AL. Therapeutic effects of substances occurring in higher Basidiomycetes mushrooms: a modern perspective. Crit Rev Immunol. 1999; 19: 65-96. PubMed: https://pubmed.ncbi.nlm.nih.gov/9987601/
  28. Therkelsen SP, Hetland G, Lyberg T, Lygren I, Johnson E. Effect of a Medicinal Agaricus blazei Murill-Based Mushroom Extract, AndoSan™, on Symptoms, Fatigue and Quality of Life in Patients with Ulcerative Colitis in a Randomized Single-Blinded Placebo Controlled Study. Plos One. 2016; 11, e0150191. PubMed: https://pubmed.ncbi.nlm.nih.gov/26933886/
  29. Di Naso FC. Effect of Agaricus blazei Murill on the pulmonary tissue of animals with streptozotocin-induced diabetes. Exp Diabetes Res. 2010; 543926. PubMed: https://pubmed.ncbi.nlm.nih.gov/20585363/
  30. Niwa A, Tajiri T, Higashino H. Ipomoea batatas and Agarics blazei ameliorate diabetic disorders with therapeutic antioxidant potential in streptozotocin-induced diabetic rats. J Clin Biochem Nutr. 2011; 48: 194-202. PubMed: https://pubmed.ncbi.nlm.nih.gov/21562638/
  31. De Jesus Pereira NC, Régis WCB, Costa LE, de Oliveira JS, da Silva AG, et al. Evaluation of adjuvant activity of fractions derived from Agaricus blazei, when in association with the recombinant LiHyp1 protein, to protect against visceral leishmaniasis. Exp Parasitol. 2015; 153: 180-190. PubMed: https://pubmed.ncbi.nlm.nih.gov/25845753/
  32. Valadares DG, Duarte MC, Ramírez L, Chávez-Fumagalli MA, Martins VT, et al. Prophylactic or therapeutic administration of Agaricus blazei Murrill is effective in treatment of murine visceral leishmaniasis. Exp Parasitol. 2012; 132: 228-236. PubMed: https://pubmed.ncbi.nlm.nih.gov/22824583/
  33. Bobek P, Ozdín L, Galbavý S. Dose- and time-dependent hypocholesterolemic effect of oyster mushroom (Pleurotus ostreatus) in rats. Nutrition. 1998; 14: 282-286. PubMed: https://pubmed.ncbi.nlm.nih.gov/9583372/
  34. Cheung PC. Plasma and hepatic cholesterol levels and fecal neutral sterol excretion are altered in hamsters fed straw mushroom diets. J Nutr. 1998; 128: 1512-1516. PubMed: https://pubmed.ncbi.nlm.nih.gov/9732312/
  35. Fukushima M, Ohashi T, Fujiwara Y, Sonoyama K, Nakano M. Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake (Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp Biol Med. 2001; 226, 758-765. PubMed: https://pubmed.ncbi.nlm.nih.gov/11520942/
  36. Kubo K, Nanba H. Anti-hyperliposis effect of maitake fruit body (Grifola frondosa). I Biol Pharm Bull. 1997; 20: 781-785. PubMed: https://pubmed.ncbi.nlm.nih.gov/9255420/
  37. Sugiyama K. Hypocholesterolemic activity of ningyoutake (Polyporus confluens) mushroom in rats. Nihon Eiyou Shokuryou Gakkaishi. 1992; 45: 265-270.
  38. Yang H, Hwang I, Kim S, Hong EJ, Jeung EB, et al. Lentinus edodes promote fat removal in hypercholesterolemic mice. Exp Ther Med. 2013; 6: 1409-1413. PubMed: https://pubmed.ncbi.nlm.nih.gov/24255670/
  39. Guillamón E, García-Lafuente A, Lozano M, D'Arrigo M, Rostagno MA, et al. Edible mushrooms: role in the prevention of cardiovascular diseases. Fitoterapia. 2010; 81: 715-723. PubMed: https://pubmed.ncbi.nlm.nih.gov/20550954/
  40. Fukushima M, Nakano M, Y Morii, T Ohashi, Y Fujiwara, et al. Hepatic LDL receptor mRNA in rats is increased by dietary mushroom (Agaricus bisporus) fiber and sugar beet fiber. J Nutr. 2000; 130: 2151-2156. PubMed: https://pubmed.ncbi.nlm.nih.gov/10958806/
  41. Hu SH, Liang ZC, Chia YC, Lien JL, Chen KS, et al. Antihyperlipidemic and antioxidant effects of extracts from Pleurotus citrinopileatus. J Agric Food Chem. 2006; 54: 2103-2110. PubMed: https://pubmed.ncbi.nlm.nih.gov/16536582/
  42. Khatun K, Mahtab H, Khanam PA, Sayeed MA, Khan KA, et al. Oyster mushroom reduced blood glucose and cholesterol in diabetic subjects. Mymensingh Med J. 2007; 16: 94-99. PubMed: https://pubmed.ncbi.nlm.nih.gov/17344789/
  43. Braga LH. Avaliação dos efeitos da utilização do Agaricus blazei Murril sobre os índices de LDL, HDL, VLDL e triglicerídeos em ratos Wistar, in: de Pesquisa de Ies do Sistema E. Estadual de Minas Gerais, U. Caratinga/MG, III. 2008.
  44. Gonçalves JL, Roma EH, Gomes-Santos AC, Aguilar EC, Cisalpino D, et al. Pro-inflammatory effects of the mushroom Agaricus blazei and its consequences on atherosclerosis development. Eur J Nutr. 2012; 51: 927-937. PubMed: https://pubmed.ncbi.nlm.nih.gov/22086299/
  45. De Miranda AM. Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis. Eur J Nutr. 2017; 56: 1707-1717. PubMed: https://pubmed.ncbi.nlm.nih.gov/27151383/
  46. Nakamura A, ZhuQ, Yokoyama Y, Kitamura N, Uchida S, et al. Agaricus brasiliensis KA21 may prevent diet-induced Nash through its antioxidant, anti-inflammatory, and anti-fibrotic activities in the liver. Foods. 2019; 8: 546. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915480/
  47. Borchani C, Fonteyn F, Jamin G, Destain J, Willems L, et al. Structural Characterization, Technological Functionality, and Physiological Aspects of Fungal β-D-glucans: a review. Crit. Rev. Food Sci Nutr. 2016; 56: 1746-1752. PubMed: https://pubmed.ncbi.nlm.nih.gov/25830657/
  48. Kim YW, Kim KH, Choi HJ, Lee DS. Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol. Lett. 2005; 27: 483-487. PubMed: https://pubmed.ncbi.nlm.nih.gov/15928854/
  50. Neyrinck AM, Bindels LB, De Backer F, Pachikian BD, Cani PD, et al. Dietary supplementation with chitosan derived from mushrooms changes adipocytokine profile in diet-induced obese mice, a phenomenon linked to its lipidlowering action. Int Immunopharmacol. 2009; 9: 767-773. PubMed: https://pubmed.ncbi.nlm.nih.gov/19286482/
  51. Fernandez ML. Soluble fiber and nondigestible carbohydrate effects on plasma lipids and cardiovascular risk. Curr Opin Lipidol. 2001; 12: 35-40. PubMed: https://pubmed.ncbi.nlm.nih.gov/11176201/
  52. Van Bennekum AM, Nguyen DV, Schulthess G, Hauser H, Phillips MC. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br J Nutr. 2005; 94L: 331-337. PubMed: https://pubmed.ncbi.nlm.nih.gov/16176602/
  53. Fernandez ML. Distinct mechanisms of plasma LDL lowering by dietary fiber in the guinea pig: specific effects of pectin, guar gum, and psyllium. J Lipid Res. 1995; 36: 2394-2404. PubMed: https://pubmed.ncbi.nlm.nih.gov/8656077/
  54. Chen ZY, Jiao R, Ma KY. Cholesterol-lowering nutraceuticals and functional foods. J Agric Food Chem. 2008; 56: 8761-8773. PubMed: https://pubmed.ncbi.nlm.nih.gov/18778072/
  55. Marcil V, Delvin E, Seidman F, Poitras L, Zoltowska M, et al. Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol. 2002; 283: G340-G346. PubMed: https://pubmed.ncbi.nlm.nih.gov/12121881/
  56. Theuwissen E, Mensink RP. Water-soluble dietary fibers and cardiovascular disease. Physiol Behav. 2008; 94: 285-292. PubMed: https://pubmed.ncbi.nlm.nih.gov/18302966/
  57. Rideout TC, Fan MZ. Guar gum consumption enhances hepatic ABCG5/G8 expression and increases ileal cholesterol excretion in pigs. Vasc Health Risk Manag. 2008; 4: 1023-1033. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605338/
  58. Turkoglu A, et al. Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill Food Chem. 2007; 101: 267-273.
  59. Bose M, Lambert JD, Ju J, Reuhl KR, Shapses SA, et al. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat–fed mice. J Nutr. 2008; 138: 1677-1683. PubMed: https://pubmed.ncbi.nlm.nih.gov/18716169/
  60. Naissides M, Mamo JCL, James AP, Pal S. The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis. 2004; 177: 401-408. PubMed: https://pubmed.ncbi.nlm.nih.gov/15530916/
  61. Kobayashi S. The effect of polyphenols on hypercholesterolemia through inhibiting the transport and expression of Niemann-Pick C1-Like 1. Int J Mol Sci. 2019; 20: 4939. PubMed: https://pubmed.ncbi.nlm.nih.gov/31590417/
  62. Lutz M, Fuentes E, Ávila F, Alarcón M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules. 2019; 24: 366. PubMed: https://pubmed.ncbi.nlm.nih.gov/30669612/
  63. Oyetayo VO. Free radical scavenging and antimicrobial propertiers of extracts of wild mushrooms. Br J Microbiol. 2009; 40: 380-386. PubMed: https://pubmed.ncbi.nlm.nih.gov/24031376/
  64. Yurkiv B, Wasser SP, Nevo E, Sybirna NO. Antioxidant effects of medicinal mushrooms agaricus brasiliensis and Ganoderma lucidum (higher basidiomycetes): evidence from animal studies. Int J Med Mushrooms. 2015; 17: 943-955. PubMed: https://pubmed.ncbi.nlm.nih.gov/26756186/
  65. Oliveira OMMF, Vellosa JCR, Fernandes AS, Buffa-Filho W, Hakime-Silva RA, et al. Antioxidant activity of Agaricus blazei. Fitoterapia. 2007; 78: 263-264. PubMed: https://pubmed.ncbi.nlm.nih.gov/17349751/
  66. da Silva de Souza AC, de Almeida Gonсalves G, Soares AA, de Sá-Nakanishi AB, de Santi-Rampazzo AP, et al. Antioxidant action of an aqueous extract of royal sun medicinal mushroom, Agaricus brasiliensis (Agaricomycetes), in Rats with Adjuvant-Induced Arthritis. Int J Med Mushrooms. 2018; 20: 101-117. PubMed: https://pubmed.ncbi.nlm.nih.gov/29773003/
  67. Kawagishi H. Formolysis of a potent antitumor (1→6)-β-D-glucan-protein complex from Agaricus blazei fruiting bodies and antitumor activity of the resulting products. Carbohydr Polym. 1980; 12: 393-403.
  68. Mizuno T. Antitumor activity and some properties of water-soluble polysaccides from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agric Biol Chem. 1990a; 54: 2889-2896.
  69. Mizuno T. Antitumor activity and some properties of water-insoluble polysaccharides from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agric Biol Chem. 1990b; 54: 2897-2905.
  70. Itoh H, Ito H, Amano H, Noda H. Inhibitory action of a (1→ 6)-β-D-glucan-protein complex (FIII-2-b) isolated from Agaricus blazei Murill (" Himematsutake") on Meth A fibrosarcoma-bearing mice and its antitumor mechanism. Jpn J Pharmacol. 1994; 66: 265-271. PubMed: https://pubmed.ncbi.nlm.nih.gov/7869611/
  71. Ebina T, Fujimiya Y. Antitumor effect of a peptide-glucan preparation extracted from Agaricus blazei in a double-grafted tumor system in mice. Biotherapy. 1998; 11: 259-265. PubMed: https://pubmed.ncbi.nlm.nih.gov/9950102/
  72. Fujimiya Y, Suzuki Y, Oshiman K, Kobori H, Moriguchi K, et al. Selective tumoricidal effect of soluble proteoglucan extracted from the basidiomycete, Agaricus blazei Murill, mediated via natural killer cell activation and apoptosis. Cancer Immunol. Immunother. 1998; 46: 147-159. PubMed: https://pubmed.ncbi.nlm.nih.gov/9625538/
  73. Dong Q, Yao J, Yang X, Fang J. Structural characterization of a water-soluble β-D-glucan from fruiting bodies of Agaricus blazei Carbohydr Res. 2002; 337: 1417-1421. PubMed: https://pubmed.ncbi.nlm.nih.gov/12204626/
  74. Sorimachi K, Akimoto K, Ikehara Y, Inafuku K, Okubo A, et al. Secretion of TNF-α, IL-8 and nitric oxide by macrophages activated with Agaricus blazei Murill fractions in vitro. Cell Struct Funct. 2001; 26: 103-108. PubMed: https://pubmed.ncbi.nlm.nih.gov/11482452/
  75. Bernardshaw S, Hetland G, Ellertsen LK, Tryggestad AMA, Johnson E. An extract of the medicinal mushroom Agaricus blazei murill differentially stimulates production of pro-inflammatory cytokines in human monocytes and human vein endothelial cells in vitro. Inflammation. 2005; 29: 147-153. PubMed: https://pubmed.ncbi.nlm.nih.gov/17091395/
  76. Tangen JM, Holien T, Mirlashari MR, Misund K, Hetland G. Cytotoxic Effect on Human myeloma Cells and leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™. BioMed Res. Int. 2017; 2059825. PubMed: https://pubmed.ncbi.nlm.nih.gov/29238712/
  77. Minari MC, Rincão VP, Soares SA, Ricardo NM, Nozawa C, et al. Antiviral properties of polysaccharides from Agaricus brasiliensis in the replication of bovine herpesvirus 1. Acta Virol. 2011; 55: 255-259. PubMed: https://pubmed.ncbi.nlm.nih.gov/21978159/
  78. Navegantes-Lima KC, Monteiro VVS, de França Gaspar SL, de Brito Oliveira AL, de Oliveira JP, et al. Agaricus brasiliensis Mushroom Protects Against Sepsis by Alleviating Oxidative and Inflammatory Response. Front Immunol. 2020; 11: 1238. PubMed: https://pubmed.ncbi.nlm.nih.gov/32714320/
  79. Vitak TY, Wasser SP, Nevo E, Sybirna NO. Enzymatic System of Antioxidant Protection of Erythrocytes in Diabetic Rats Treated with Medicinal Mushrooms Agaricus brasiliensis and Ganoderma lucidum (Agaricomycetes). Int J Med Mushrooms. 2017; 19: 697-708. PubMed: https://pubmed.ncbi.nlm.nih.gov/29199569/
  80. Akahane K, Satoh K, Ohta M, Ozaki Y. Hot Water Extracts of the Royal Sun Mushroom, Agaricus brasiliensis (Higher Basidiomycetes), Inhibit Platelet Activation via the P2Y1 Receptor. Int J Med Mushrooms. 2015; 17: 763-770. PubMed: https://pubmed.ncbi.nlm.nih.gov/26559862/
  81. Vitak TY, Wasser SP, Nevo E, Sybirna NO. Structural Changes of Erythrocyte Surface Glycoconjugates after Treatment with Medicinal Mushrooms. Int J Med Mushrooms. 2015; 17: 867-878. PubMed: https://pubmed.ncbi.nlm.nih.gov/26756299/
  82. Zhang L, Yuan B, Wang HP, Gao Y. Therapeutic effect of Agaricus brasiliensis on phenylhydrazine-induced neonatal jaundice in rats. Biomed Res Int. 2015; 2015: 651218. PubMed: https://pubmed.ncbi.nlm.nih.gov/25883968/
  83. Yurkiv B, Wasser SP, Nevo E, Sybirna NO. The Effect of Agaricus brasiliensis and Ganoderma lucidum Medicinal Mushroom Administration on the L-arginine/Nitric Oxide System and Rat Leukocyte Apoptosis in Experimental Type 1 Diabetes Mellitus. Int J Med Mushrooms. 2015; 17: 339-350. PubMed: https://pubmed.ncbi.nlm.nih.gov/25954960/
  84. Vitak TY, Wasser SP, Nevo E, Sybirna NO. The Effect of the Medicinal Mushrooms Agaricus brasiliensis and Ganoderma lucidum (Higher Basidiomycetes) on the Erythron System in Normal and Streptozotocin-Induced Diabetic Rats. Int J Med Mushrooms. 2015; 17: 277-286. PubMed: https://pubmed.ncbi.nlm.nih.gov/25954911/
  85. Fantuzzi E, Anastácio LR, Nicoli JR, de Paula SO, Arantes RME, et al. Evaluation of Royal Sun Agaricus, Agaricus brasiliensis S. Wasser et al., aqueous extract in mice challenged with Salmonella enterica serovar Typhimurium. Int J Med Mushrooms. 2011; 13: 281-288. PubMed: https://pubmed.ncbi.nlm.nih.gov/22135880/
  86. Silva FF, de Oliveira GAC, Costa HCM, Regis WCB. Royal Sun Culinary-Medicinal Mushroom, Agaricus brasiliensis (Agaricomycetes), Supplement in Training Capacity Improvement Parameters. Int J Med Mushrooms. 2017; 19: 759-766. PubMed: https://pubmed.ncbi.nlm.nih.gov/29199551/
  87. Liu Y, Fukuwatari Y, Okumura K, Takeda K, Ishibashi KI, et al. Immunomodulating Activity of Agaricus brasiliensis KA21 in Mice and in Human Volunteers. Evid Based Complement Alternat Med. 2008; 5: 205-219. PubMed: https://pubmed.ncbi.nlm.nih.gov/18604247/


Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More