Research Article

Evaluation of Heavy Metals in Commercial Baby Foods

Omobolanle David Garuba, Judith C Anglin, Sonya Good, Shodimu-Emmanuel Olufemi, Olubukola Monisola Oyawoye and Sodipe Ayodotun*

Published: 21 February, 2024 | Volume 8 - Issue 1 | Pages: 012-020

Nutritious and safe foods are essential to meet normal physiological and metabolic functions. This study evaluated heavy metals in selected food products for newborns and toddlers. These substances may result in adverse health risks and young children are extremely vulnerable due to their immature immune systems and organs. Industrialization and technological advancement have contributed to an increase in heavy metals in the soil; therefore, entering the food system in potentially harmful amounts. Safe levels have been established by monitoring agencies to reduce the presence of heavy metals. Ten national brands of baby foods were analyzed for selected heavy metals. The main ingredients ranged from vegetables, fruits, dairy, poultry, meats, and grains. The products were analyzed in triplicates using QQQ-ICP-MS instrumentation to detect the presence of arsenic, cadmium, zinc, lead, nickel, aluminum, and chromium. Based on the Agency for Toxic Substances and Disease Registry [1] guidelines for safe quantities, aluminum (4.09 µg/g and 2.50 µg/g) and zinc (33.5 µg/g 69.5 µg/g, and 30.2 µg/g) exceeded the recommended levels of 1 µg/g/day and 2 - 3 µg/g /day respectively. Mixed model analysis found significant differences in metal concentrations (F6,24 = 2.75, p = 0.03) with an average metal concentration of 0.96 µg/g. However, no significant correlations were found between the packaging materials used and the observed metal concentrations in the food samples. The study concluded that the presence of heavy metals may be due to food type and the soil on which it is grown and not the packaging materials, establishing food system contamination by heavy metals.

Read Full Article HTML DOI: 10.29328/journal.afns.1001056 Cite this Article Read Full Article PDF


Heavy metals; Baby foods; Nutrition; Safe levels; Food system; Minimal risk level; Global contamination


  1. Toxicological profile for Arsenic. 2007. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
  2. Ibrahim C, Kammouni Z, Barake M, Kassir M, Al-Jawaldeh A, Matta J, Sacre Y, Hanna-Wakim L, Haddad J, Hoteit M. Pediatric Health Risk Assessment for Exposure to Aluminum from Infant Formulas and Children under the Age of Five's Food Products among Arab Infants: Experience from Lebanon. Foods. 2022 Aug 19;11(16):2503. doi: 10.3390/foods11162503. PMID: 36010503; PMCID: PMC9407326.
  3. World Health Organization (WHO): Healthy diet 29 April 2020 https://www.who.int/news-room/fact-sheets/detail/healthy-diet
  4. Lead in Food, Food wares, and Dietary Supplements. 2018a. https://www.fda.gov/food/metals/lead-food-foodwares-and-dietary-supplements
  5. Rafaela P, Petrarca MH, Filho JT, Goday HT. Simultaneous determination of furfural, 5-hydroxymethylfurfural and 4-hydroxy-2,5-dimethyl-3 (2H)- furanone in baby foods available in the Brazilian market, Journal of Food Composition and Analysis. 2021; 99:103874.
  6. Sam A, Robert RC. Evaluation of stage 2 baby foods as potential source of heavy metal toxicity in infants 6 to 12 months. Journal of Undergraduate Chemistry Research. 2021; 20(2):23. doi: 3389/fnut.2022.919913
  7. Saeed S, Amir J, Siroos S, Yeboah GA and Jesus RC. Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils. Journal of cleaner production. 2021; 286:126345, https://doi.org/10.1016/j.jclepro.2021.126345.
  8. Eleboudy AA, Amer AA, El-Makarem A, Abo HS, Hadour HH. Heavy metal residues in some dairy products. Alexandria Journal of Veterinary Sciences (AJVS). 2016; 52:1; 334-346. https://doi.org/10.1016/j.focha.2023.100261
  9. Guhur ME, Gamze C. Toxic metals in paper and paperboard food packaging. BioResources. 2018; 13(4): 7560-7580.
  10. Joon-Goo L, Jeong-Yun H, Hye-Eun L, Tae-Hun K, Jang-Duck C, Gil-Jin G. Effects of food processing methods on migration of heavy metals to food. Appl. Biol Chem. 2019; 6264:1-10. https://doi.org/10.1186/s13765-019-0470-0.
  11. El-Shaer M, El-Kholie EA, Abdelah SH. Migration of Iron and some toxic metals to foodstuffs during storage. Journal of Home Economics. 2022; 32(2):64-79. DOI: 21608/MKAS.2022.113347.1104
  12. Wong C, Roberts SM, Saab IN. Review of regulatory reference values and background levels for heavy metals in the human diet. Regul Toxicol Pharmacol. 2022 Apr; 130:105122. doi: 10.1016/j.yrtph.2022.105122. Epub 2022 Jan 26. PMID: 35090957.
  13. Ali H, Khan E. What are heavy metals? long-standing controversy over the scientific use of the term ‘heavy metals’—proposal of a comprehensive definition, Toxicological & Environmental Chemistry. 2017. http://dx.doi.org/10.1080/02772248.2017.1413652
  14. Parker GH, Gillie CE, Miller JV, Badger DE, Kreider ML. Human health risk assessment of arsenic, cadmium, lead, and mercury ingestion from baby foods. Toxicol Rep. 2022 Feb 4; 9:238-249. doi: 10.1016/j.toxrep.2022.02.001. PMID: 35198407; PMCID: PMC8850323.
  15. Scientific opinion on dietary reference values for chromium. European Food Safety Authority (EFSA) Eur. Food Safety Authority (EFSA). 2013; 12 (10):25. 
  16. Health Canada. Guidelines for Canadian Drinking Water Quality – Chromium. www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-
  17. Naveed M, Jahangeer M, Bouyahya A, Omari NEl, Ghchime R, Balahbib A, Aboulaghras S, Mahmood Z, Akram M, Muhammad S, Shah A, Ivan NM, Marina D, Rebezov M, Venkidasamy B, Thiruvengadam M, Ali Shariat M: Heavy metal contamination of natural foods is a serious health issue: a review. Sustainability. 2022; 14:161. https://doi.org/10.3390/su14010161
  18. Vogt R, Bennett D, Cassady D, Frost J, Ritz B, Hertz-Picciotto I. Cancer and non-cancer health effects from food contaminant exposures for children and adults in California: a risk assessment. Environ Health. 2012 Nov 9; 11:83. doi: 10.1186/1476-069X-11-83. PMID: 23140444; PMCID: PMC3551655.
  19. Dietary Guidelines for Americans. health.gov 2020-2025
  20. Dominiquez A, Paz S, Rubio C, Gutierrez A, Gonzalez-Weller D, Revert C, Hardisson Arturo. Essential and toxic metals in infant formula from the European community. Open Acc. J of Toxicol. 2017; 2:2. DOI:19080/OAJT.2017.02.555585
  21. Moein B, Ahansaz A, Mahshid B, Amiri B, Nasiri AK. Prevalence of heavy metals in cereal-based baby foods: protocol of a systematic review study. 2021. DOI:10.13140/RG.2.2.23088.89602
  22. Shah J, Said M, Wajid A, Luqman HM. Potential risks assessment of heavy metal(loids) contaminated vegetables in Pakistan: a review. Geocarto International. 2021; 37:24. https://doi.org/10.1080/10106049.2021.1969449
  23. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 Jun;7(2):60-72. doi: 10.2478/intox-2014-0009. Epub 2014 Nov 15. PMID: 26109881; PMCID: PMC4427717.
  24. de Almeida CC, Baião DDS, Rodrigues PA, Saint'Pierre TD, Hauser-Davis RA, Leandro KC, Paschoalin VMF, da Costa MP, Conte-Junior CA. Toxic Metals and Metalloids in Infant Formulas Marketed in Brazil, and Child Health Risks According to the Target Hazard Quotients and Target Cancer Risk. Int J Environ Res Public Health. 2022 Sep 6;19(18):11178. doi: 10.3390/ijerph191811178. PMID: 36141460; PMCID: PMC9517614.
  25. FDA: Total Diet Study 2018. https://www.fda.gov/food/science-research-food/total-diet-study
  26. Amarh FA, Agorku ES, Voegborlo RB, Ashong GW, Atongo GA. Health risk assessment of some selected heavy metals in infant food sold in Wa, Ghana. Heliyon. 2023 May 12;9(5):e16225. doi: 10.1016/j.heliyon.2023.e16225. PMID: 37215839; PMCID: PMC10196951.
  27. Toxicological Profile for Barium. U.S. Department of Health and Human Services, Public Health Service, Atlanta. GA. 2007.
  28. Toxicological profile for Arsenic. 2007. https://www.atsdr.cdc.gov/toxprofiles/tp2.pdf
  29. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Exp Suppl. 2012; 101:133-64. doi: 10.1007/978-3-7643-8340-4_6. PMID: 22945569; PMCID: PMC4144270.
  30. Xiong T, Austruy A, Pierart A, Shahid M, Schreck E, Mombo S, Dumat C. Kinetic study of phytotoxicity induced by foliar lead uptake for vegetables exposed to fine particles and implications for sustainable urban agriculture. J Environ Sci (China). 2016 Aug; 46:16-27. doi: 10.1016/j.jes.2015.08.029. Epub 2016 Feb 3. PMID: 27521932.
  31. Xiong T, Dumat C, Pierart A, Shahid M, Kang Y, Li N, Bertoni G, Laplanche C. Measurement of metal bioaccessibility in vegetables to improve human exposure assessments: field study of soil-plant-atmosphere transfers in urban areas, South China. Environ Geochem Health. 2016 Dec;38(6):1283-1301. doi: 10.1007/s10653-016-9796-2. Epub 2016 Jan 29. PMID: 26825060.
  32. Sana K, Muhammad S, Khan NN, Behzad M, Irshad B, Camille D, Geochem J. A comparison of technologies for remediation of heavy metal contaminated soils. Explor. 2017; 182 (B):247–268. https://doi.org/10.1016/j.gexplo.2016.11.021
  33. Rai PK. Phytoremediation of Emerging Contaminants in Wetlands. Taylor & Francis, Boca Raton, Florida, USA. 2018; 248. https://doi.org/10.1201/9781351067430
  34. Said M, Kashif A. Heavy metal contamination in water and fish of the Hunza River and its tributaries in Gilgit-Baltistan: Evaluation of potential risks and provenance. Environmental Technology and Innovation. 2020; 20: 101159. https://doi.org/10.1016/j.eti.2020.101159
  35. Muhammad S. Evaluation of heavy metals in water and sediments, pollution, and risk indices of Naltar Lakes, Pakistan. Environ Sci Pollut Res Int. 2023 Feb;30(10):28217-28226. doi: 10.1007/s11356-022-24160-9. Epub 2022 Nov 18. PMID: 36399291.
  36. Gall JE, Boyd RS, Rajakaruna N. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 2015 Apr;187(4):201. doi: 10.1007/s10661-015-4436-3. Epub 2015 Mar 24. PMID: 25800370.
  37. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020 Sep 8;6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691. PMID: 32964150; PMCID: PMC7490536.
  38. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021 Apr 13;12:643972. doi: 10.3389/fphar.2021.643972. PMID: 33927623; PMCID: PMC8078867.
  39. El Safty AMK. Heavy metal overload in autistic children. Egyptian Journal of Occupational Medicine. 2012; 36 (1): 97-106. DOI: 21608/ejom.2012.753
  40. Gamakaranage, C.: Heavy metals and autism. Journal of Heavy Metal Toxicity and Diseases. 2016; 1(3):12. ISSN 2473-6457.
  41. Jafari Mohammadabadi H, Rahmatian A, Sayehmiri F, Rafiei M. The Relationship Between the Level of Copper, Lead, Mercury and Autism Disorders: A Meta-Analysis. Pediatric Health Med Ther. 2020 Sep 21;11:369-378. doi: 10.2147/PHMT.S210042. PMID: 33061742; PMCID: PMC7519826.
  42. Gil-Hernández F, Gómez-Fernández AR, la Torre-Aguilar MJ, Pérez-Navero JL, Flores-Rojas K, Martín-Borreguero P, Gil-Campos M. Neurotoxicity by mercury is not associated with autism spectrum disorders in Spanish children. Ital J Pediatr. 2020 Feb 12;46(1):19. doi: 10.1186/s13052-020-0780-1. PMID: 32050998; PMCID: PMC7017444.
  43. Ogochukwu AO, Sha’ato R, Okeke F, Adekola OA, Agbele IE, Adegoke AO, Adeniyi AK. Evaluation of heavy metals profile in different brands of infant food nutrition. Chemical Science International Journal. 2019; 27(3):1-9. https://doi.org/10.9734/CSJI/2019/v27i330116.
  44. Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. Ecotoxicol Environ Saf. 2020 Feb;189:109987. doi: 10.1016/j.ecoenv.2019.109987. Epub 2019 Nov 26. PMID: 31784104.
  45. Afonne OJ, Ifediba EC. Heavy Metals Risks in Plant Foods–Need to Step up Precautionary Measures. Curr. Opin. Toxicol. 2020; 22: 1–6. https://doi.org/10.1016/j.cotox.2019.12.006
  46. Frisbie SH, Mitchell EJ, Roudeau S, Domart F, Carmona A, Ortega R. Manganese levels in infant formula and young child nutritional beverages in the United States and France: Comparison to breast milk and regulations. PLoS One. 2019 Nov 5;14(11):e0223636. doi: 10.1371/journal.pone.0223636. PMID: 31689314; PMCID: PMC6830775.
  47. Flannery BM, Schaefer HR, Middleton KB. A scoping review of infant and children health effects associated with cadmium exposure. Regul Toxicol Pharmacol. 2022 Jun;131:105155. doi: 10.1016/j.yrtph.2022.105155. Epub 2022 Mar 4. PMID: 35257832.
  48. Technical SOP for Operation of Milestone UltraWAVE Microwave Digestion UnitEl (n.d). https://dtsc.ca.gov/wp-content/uploads/sites/31/2020/06/03.3051.01_rev1_Berk_Technical-SOP-for-Operation-of-Milestone-UltraWAVE-Microwave-Digestion-Unit.pdf
  49. Weihang Y, Casey JF, Yongjum G. A new sample preparation method for crude or fuels oils by mineralization utilizing single reaction chamber microwave for broader multi-element analysis by ICP techniques. Fuel. 2017; 206: 64-79
  50. Minimal risk levels (MRLs) for Hazardous Substances. 2012. Minimal Risk Levels for Hazardous Substances | ATSDR (cdc.gov). 
  51. Chuchu N, Patel B, Sebastian B, Exley C. The aluminium content of infant formulas remains too high. BMC Pediatr. 2013 Oct 8;13:162. doi: 10.1186/1471-2431-13-162. PMID: 24103160; PMCID: PMC3851493.
  52. Li J, Cao D, Huang Y, Chen B, Chen Z, Wang R, Dong Q, Wei Q, Liu L. Zinc Intakes and Health Outcomes: An Umbrella Review. Front Nutr. 2022 Feb 8;9:798078. doi: 10.3389/fnut.2022.798078. PMID: 35211497; PMCID: PMC8861317.
  53. Jana W, Lothan R. Handbook on the Toxicology of Metals. 2022.
  54. 2022. Zinc - Health Professional Fact Sheet (nih.gov)
  55. Hussain S, Khan M, Sheikh TMM, Mumtaz MZ, Chohan TA, Shamim S, Liu Y. Zinc Essentiality, Toxicity, and Its Bacterial Bioremediation: A Comprehensive Insight. Front Microbiol. 2022 May 31;13:900740. doi: 10.3389/fmicb.2022.900740. Erratum in: Front Microbiol. 2023 Jan 17;13:1133733. PMID: 35711754; PMCID: PMC9197589.
  56. Antonious GF, Dennis SO, Unrine JM, Snyder JC. Heavy metals uptake in plant parts of sweet potato grown in soil fertilized with municipal sewage sludge. International Journal of Geology. 2011; 1(5): 13-20.
  57. Narayan RR. Nickel essentiality, toxicity and the mechanism of toxicity in animals. Poll Res. 2020; 40(1):227-235. https://doi.org/10.1016/s1040-8428(01)00214-1
  58. Gonnelli C, Renella G. Chromium and Nickel. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution. 2013; 22. https://doi.org/10.1007/978-94-007-4470-7_11
  59. Nkwunonwo UC, Odika PO, Onyia NI. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. ScientificWorldJournal. 2020 Apr 16;2020:6594109. doi: 10.1155/2020/6594109. PMID: 32351345; PMCID: PMC7182971.
  60. Cunningham E. What Role Does Diet Play in the Management of Nickel Allergy? J Acad Nutr Diet. 2017 Mar;117(3):500. doi: 10.1016/j.jand.2017.01.001. PMID: 28236963.
  61. Gu Z, de Silva S, Reichman SM. Arsenic Concentrations and Dietary Exposure in Rice-Based Infant Food in Australia. Int J Environ Res Public Health. 2020 Jan 8;17(2):415. doi: 10.3390/ijerph17020415. PMID: 31936289; PMCID: PMC7014030.
  62. Bair EC. A Narrative Review of Toxic Heavy Metal Content of Infant and Toddler Foods and Evaluation of United States Policy. Front Nutr. 2022 Jun 27;9:919913. doi: 10.3389/fnut.2022.919913. PMID: 35832055; PMCID: PMC9271943.
  63. Rafati Rahimzadeh M, Rafati Rahimzadeh M, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Caspian J Intern Med. 2017 Summer;8(3):135-145. doi: 10.22088/cjim.8.3.135. PMID: 28932363; PMCID: PMC5596182.
  64. Alharbi NS, Akamsiei RM, Almaiman LA, Al-Samti MA, Al-Mutairi HS, Al-Owais BS, Alkhalaf MM, Bineid MA. Occurrence and dietary exposure assessment of heavy metals in baby foods in the Kingdom of Saudi Arabia. Food Sci Nutr. 2023 Jun 8;11(9):5270-5282. doi: 10.1002/fsn3.3485. PMID: 37701205; PMCID: PMC10494610.
  65. Morais S, Costa FG, Pereira Heavy metals and human health. Environmental health-emerging issues and practice. J.ed. Intech. 2012; 227-246. DOI: 10.5772/29869.
  66. Igweze ZN, Ekhator OC, Nwaogazie I, Orisakwe OE. Public Health and Paediatric Risk Assessment of Aluminium, Arsenic and Mercury in Infant Formulas Marketed in Nigeria. Sultan Qaboos Univ Med J. 2020 Feb;20(1):e63-e70. doi: 10.18295/squmj.2020.20.01.009. Epub 2020 Mar 9. PMID: 32190371; PMCID: PMC7065688.
  67. Munro C, Hlywka JJ, Kennepohl EM. Risk assessment of packaging materials. Food Addit Contam. 2002;19 Suppl:3-12. doi: 10.1080/02652030110102818. PMID: 11962713.
  68. Public Health Statement- Cadmium. 2012. https://www.atsdr.cdc.gov/phs/phs.asp?id=46&tid=15
  69. Polvara E, Spinazzè A, Invernizzi M, Cattaneo A, Sironi S, Cavallo DM. Toxicological assessment method for evaluating the occupational risk of dynamic olfactometry assessors. Regul Toxicol Pharmacol. 2021 Oct;125:105003. doi: 10.1016/j.yrtph.2021.105003. Epub 2021 Jul 12. PMID: 34265403.
  70. Closer to Zero Action Plan for Baby Foods. 2021. www.fda.gov/food/metals-and-your-food/closer-zero-action-plan-baby-foods
  71. Enrique M, Tatiana G. Analytical procedures for determining heavy metal contents in honey: A bioindicator of environmental pollution. INTECH. 2017; 14:311-324 DOI: 10.5772/66328.
  72. Muhammad S, Ali W, Ur Rehman I. Potentially Harmful Elements Accumulation and Health Risk Assessment of Edible Fish Tissues Caught from the Phander Valley, Northern Pakistan. Biol Trace Elem Res. 2022 Nov;200(11):4837-4845. doi: 10.1007/s12011-021-03051-z. Epub 2021 Dec 2. PMID: 34855146.
  73. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int. 2019 Apr;125:365-385. doi: 10.1016/j.envint.2019.01.067. Epub 2019 Feb 8. PMID: 30743144.
  74. Nayak S, Sahu S, Patra S, John J. Assessment of Copper and Zinc Levels in Hair and Urine of Children With Attention Deficit Hyperactivity Disorder: A Case-Control Study in Eastern India. Cureus. 2021 Dec 25;13(12):e20692. doi: 10.7759/cureus.20692. PMID: 35106229; PMCID: PMC8786440.
  75. Zaky EA. Toxic heavy metals and autism spectrum disorder: is there a link? Journal of child and adolescent behavior. 2017; 5:2. http://dx.doi.org/10.4172/2375-4494.1000336
  76. Zhang W, Liu Y, Liu Y, Liang B, Zhou H, Li Y, Zhang Y, Huang J, Yu C, Chen K. An Assessment of Dietary Exposure to Cadmium in Residents of Guangzhou, China. Int J Environ Res Public Health. 2018 Mar 20;15(3):556. doi: 10.3390/ijerph15030556. PMID: 29558399; PMCID: PMC5877101.


Similar Articles

Recently Viewed

Read More

Most Viewed

Read More

Help ?